The exercises for this chapter are so interrelated that I am giving all of the answers, and not just the odd numbered ones.

21.1 Mazzucchelli et al. (2010) study

															q on 10 df					
															vhich is chi.s	= .189				
V(gI-gbar)^2	1,4609	0.1737	0.9338	1.0759	0.1530	1.0451	3.4025		1.0784	0.3202	3.5644	0.4552		13.6631	13.6631 v	Q	92.2350		0.1993	
V^2 1	13.3198359	31.21001217	115.6203029	26.84635829	52.5099769	21.04199983	13.2231405	273.7716	65.0364204	692.5207756	18,41993774	976.5625	1752.5396	2026.3113					au =	
V*g^2	0.0655	2.5454	0.4475	0.0096	3.0053	4.3696	7.8151	18.2580	0.1427	9.7600	8.5326	4,4651	22.9004						-	
NBN	-0,4891	3.7709	2.1935	0.2228	4,6667	4.4771	5.3309	20,1729	1.0726	16.0263	6.0515	11,8125	34,9629	55,1358	0.4987	0.0951	0.3123	0.6851		
veight	3.6496	5.5866	10.7527	5.1813	7.2464	4.5872	3.6364	40.6402	8.0645	26.3158	4.2918	31.2500	69.9222	110.5623	Aean g =	e(Mean g) =	:-lower =	d-upper		
sg^2 v	0.2740	0.1790	0:030	0.1930	0.1380	0.2180	0.2750		0.1240	0.0380	0.2330	0.0320			~	5				
	-0.134	0.675	0.204	0.043	0.644	0.976	1.466		0.133	0.609	1.41	0.378								
2	12.00	16.00	27.00	9.00	14.00	9.00	11.00	98.00	13.00	60.00	13.00	49.00	135.00	233.00	_					
n	12.00	14.00	33.00	10.00	15.00	10.00	9.00	103.00	12.00	50.00	40.00	49.00	151.00	254.00						
SubGrp	ш	ш	ш	ш	ш	ш	ш		W	×	W	×								
Author	Barlow86a	Besyner79	Lovett88	Stark	VanDenHaut	Weinberg	Wilson) SUM	 2 Barlow86a	5 Fordyce77	Fordyce83	Reich81	5 SUM	Grandsum		-			10	

21.2 - 21.3

21.4 The following results are from R using library(metaphor)

```
Fixed-Effects Model (k = 4)

Test for Heterogeneity:

Q(df = 3) = 7.2655, p-val = 0.0639

Model Results:

estimate se zval pval ci.lb ci.ub

0.2274 0.0881 2.5813 0.0098 0.0547 0.4001 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

21.5

21.6 The confidence interval does not include 0, and we can safely reject the null hypothesis and conclude that methylphenidate does increase the severity of tics in these children.

21.7 - 21.9

Fixed-Effects Model (k = 3) Test for Heterogeneity: Q(df = 2) = 2.1121, p-val = 0.3478 Model Results: estimate se zval pval ci.lb ci.ub 0.7364 0.0955 7.7109 <.0001 0.5492 0.9236 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Again we have too few studies to seriously look at heterogeneity.

21.10 - 21.11

Fixed-Effects Model (k = 9)

Test for Heterogeneity:

Q(df = 8) = 2.1826, p-val = 0.9749

Model Results:

estimate se zval pval ci.lb ci.ub 0.5239 0.2826 1.8542 0.0637 -0.0299 1.0777

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

21.12 – 21.16 Kapoor, Rajkumar et al. (2010)

The risk ratios and log risk ratios are

Risk Ratio

4.102326 6.336000 8.212389 1.963636

Log Risk Ratio

 $1.411554\ 1.846248\ 2.105644\ 0.674798$

Mean Risk Ratio and confidence limits

Log Risk Ratio

 Estimate
 se
 zval
 pval
 ci.lb
 ci.ub

 1.5747
 0.3277
 4.8055
 <.0001</td>
 0.9324
 2.2170

 Risk Ratio
 CIlower
 CIupper

 4.8293
 2.5406
 9.1798

Even at the low end of the confidence interval the addition of thalidomide increases the chances of success to 2.5 times the chance of success in the control group.

21.17 Random effects model for Bisson and Martin (2009) study

Random-Effects Model (k = 14; tau² estimator: REML)

 tau^2 (estimate of total amount of heterogeneity): 438.6370 (SE = 189.2833)

tau (sqrt of the estimate of total heterogeneity): 20.9437

I^2 (% of total variability due to heterogeneity): 94.80%

H² (total variability / within-study variance): 19.24

Test for Heterogeneity:

Q(df = 13) = 236.1772, p-val < .0001

Model Results:

estimate	se	zval	pval	ci.lb	ci.ub	
-28.6212	5.8774	-4.8697	<.0001	-40.1407	-17.1017	***

Note that we can reject the null hypothesis in our test for heterogeneity, though we have no specific variable that might explain that variability. We can also conclude that VBT is a more effective treatment than the Control treatment.